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We have applied the Gaussian auxiliary field method to a nonconserved scalar system with at-
tractive long-range interactions, falling off with distance as 1/r%*", where d is the spatial dimension
and 0 < o < 2. This study provides a test bed for the approach and shows some of the difficulties
encountered in constructing a closed equation for the pair correlation function. For the relation
¢ = ¢(m) between the order parameter ¢ and the auxiliary field m, the usual choice of the equi-
librium interfacial profile is made. The equation obtained for the equal-time two-point correlation
function is studied in the limiting cases of small and large values of the scaling variable. A Porod
regime at short distance and an asymptotic power-law decay at large distance are obtained. The
theory is not, however, consistent with the expected growth law and attempts to retrieve the correct
growth lead to inconsistencies. These results indicate a failure of the Gaussian assumption for this
system, when used in the context of the bulk dynamics. This statement holds at least within the
present form of the mapping ¢ = ¢(m), which appears to be the most natural choice, as well as
the one consistent with the emergence of the Porod regime. By contrast, Ohta and Hayakawa have
recently succeeded in implementing a Gaussian approach based on the interfacial dynamics of this
system [Physica A 204, 482 (1994)]. This clearly suggests that, beyond the simplicity of short-range
“model A” dynamics, a Gaussian approach can only capture the essential physical features if the
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crucial role of wall motion in domain growth is explicitly considered.

PACS number(s): 64.60.Cn, 64.60.My

I. INTRODUCTION

The phase ordering dynamics of systems quenched
from the disordered phase to the ordered phase has been
extensively studied [1]. There is a general consensus that
at the late stages of domain coarsening these systems
enter a scaling regime [2], in which the equal-time, two-
point correlation function has the scaling form

C(r,t) = (p(x,1)p(x +r,t)) = f(r/L(t)) , (1)

where ¢ is the scalar order-parameter field, L(t) is the
characteristic length scale at time ¢ after the the quench,
f is a scaling function, and angular brackets indicate
an average over initial conditions (and thermal noise, if
present).

A first-principles calculation of the scaling function has
proved to be a most difficult task. Even for the simplest
model dynamics, that of a nonconserved order parameter
(model A) [3] with purely short-ranged (SR) interactions,
exact results are rare and available only for cases of lim-
ited physical interest [4].

In the past few years closed-approximation schemes
for the two-point correlation function of the SR model
A (SRMA) have been proposed by a number of authors
[6-11], based on a mapping ¢(r,t) = ¢(m(r,t)) between
the order parameter and an auxiliary field m(r,¢), where
the zeros of m(r,t) define the position of the domain
walls. With this new variable the problem of describing
the field at each instant of time is transformed into a
problem of describing the evolution and statistics of the
wall network. This approach enables the use of a physi-
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cally plausible and mathematically convenient Gaussian
distribution for m. Such a distribution is unacceptable
for the order parameter field itself, since this is effectively
discontinuous at the domain size scale.

The application of this sort of approach to both
nonconserved and conserved (model B) dynamics, with
purely SR interactions, has recently received a criti-
cal review by Yeung et al. [12]. Methods based on
a description of the wall dynamics, first introduced by
Ohta, Jasnow, and Kawasaki (OJK) [5], lead to an ap-
proximate linear equation for m(r,t) or for its correla-
tor (m(x,t)m(x +r,t)). A different approach, due to
Mazenko (7], aims at deriving a closed nonlinear equation
for C(r,t), built on the equation of motion for model A,
using the single assumption that the field m is Gaussian
distributed at all times. In this method the order param-
eter dynamics is taken into account everywhere and as
the equation of motion is averaged over the initial con-
ditions, the position of the walls is averaged over. For
this reason, it is common to call it a “bulk approach.”
It has the following advantages: (i) the scaling functions
have a nontrivial dependence on the spatial dimension d;
(ii) the exponent A, which characterizes the behavior of
the different-time correlation functions, has a nontrivial
value [10, 13], while it is simply d/2 within the usual in-
terfacial methods; and (iii) it is also easily extensible to
O(n) component systems with topological defects, i.e.,
with n < d [10].

The only uncontrolled feature of the approach is the
Gaussian assumption. Recent simulation tests have
shown, however, that this assumption is not entirely sat-
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isfactory: Blundell et al. [14] have made an absolute test
(free of adjustable parameters) of the relation between
two different scaling functions, revealing disappointing
agreement with the theory. The discrepancy decreases,
however, in higher dimensions, in agreement with an ar-
gument [11] that the Gaussian approximation becomes
exact in the limit d — oo. Yeung et al. [12], using data
of Shinozaki and Oono [15] for d = 3, have checked the
single-point probability distribution for m, finding it to
be flatter at the origin than a Gaussian. It is not diffi-
cult to derive an analytical expression for the two-point
distribution P(m(1),m(2)), valid for m(1), m(2), and |r|
small compared to L(t) [16]. It differs from a Gaussian
for fixed spatial dimension d, but is consistent with a
Gaussian in the limit d — oo.

Despite these reservations, the Gaussian bulk approach
has been shown to give good results for the SRMA, dis-
playing most of the expected physical properties [7, 10].
In addition, there is very little difference between the
predictions of OJK and Mazenko for the function f(z),
given by (1), at least for the SRMA with d > 2.

In this paper we test the validity of the Gaussian bulk
approach, by extending it to model A dynamics with at-
tractive long-range (LR) interactions. This application
addresses a basic difficulty, not necessarily caused by the
use of the Gaussian assumption: the attempts to extend
the approach beyond the simplicity of the SRMA pro-
duce equations for C(r,t) which do not seem to respect
the expected growth law for the typical domain size L(t).
A lack of a proper scaling of the terms in the equation for
C(r,t), derived naively, is apparent for the case of a scalar
order parameter, namely, for the LR model A (LRMA)
and for the SR model B (SRMB), although not for a vec-
tor order parameter in which case a “naive” dimensional
analysis of the equation agrees with the known growth
law [17]. We shall see how this situation arises for the
LRMA and present our understanding of it. In the case of
the SRMB, a naive application of the method, however,
omits the important bulk diffusion process which plays a
vital role in the coarsening. Mazenko [8] has attempted,
with limited success, to solve the problem by accounting
explicitly for the bulk diffusion. The interesting feature
of the LR systems, though, is that it is not immediately
clear what, if any, physical process has been omitted or
incorrectly treated in the present bulk approach. This
observation becomes even more pertinent when one takes
into account the success of a recent Gaussian interfacial
approach, by Ohta and Hayakawa [18], where despite the
LR interactions, sharp wall profiles are considered, an
assumption which is also used in our work.

The scalar case, which is usually the more interest-
ing one in the applications, is exceptional because an
extra length, time independent at late stages, domain-
wall thickness plays a role in the dynamics, and therefore
power counting of lengths by dimensional analysis may
not yield the right scaling (in terms of the characteristic
length) for the different parts in the equation of motion.
For the SRMB [19] and the LRMA [17,20] dynamics the
growth laws are L(t) ~ t'/3 and L(t) ~ tY/(+9) (for
o < 1), respectively, for n = 1, and L(t) ~ t'/% and
L(t) ~ t'/°, respectively, for n > 2 (with logarithmic cor-

rections for n = 2 [17]), where 0 <o < 2 is the exponent
describing the LR interactions, which decay as 1/r¢+7.
For n = 1 and 1 < 0 < 2, the long-range interactions
are irrelevant and the growth law is the same as that for
the SR case [17,20]. The SRMA, however, is exceptional
since the predicted growth law L(t) ~ t/2 is the same for
both the scalar and vector order parameters, accidently
allowing for a naive dimensional analysis of the scalar
equation of motion to agree with the growth law. In this
case the role of the extra length in the scalar equation
drops out as a result of two canceling errors [20]. There-
fore we wonder if the success of the Mazenko method
with this scalar model might be somewhat fortuitous. In
other words, we raise the question of whether this ap-
proach (or any other closed bulk approach), naively ap-
plied, can succeed for those dynamic models where naive
dimensional analysis gives the wrong growth law. In this
respect it is interesting that a straightforward application
of the method of Kawasaki, Yalabik, and Gunton (KYG)
[6] to the LRMA [21] also gives the wrong growth law for
n = 1, i.e., it gives the t'/9 growth suggested by naive
dimensional analysis. This observation is consistent with
our present line of thought, as the KYG method is not
an interfacial approach.

In this paper we have developed an extension of
Mazenko’s approach for the LRMA. Just as in the appli-
cation to systems with purely short-ranged interactions,
the mapping function ¢ = ¢(m) has been taken to be the
interface profile function. Besides being interesting in its
own right, the study of this model provides a test bed
for the approach and shows some of the difficulties that
a bulk approximate theory must resolve.

II. THE MODEL WITH LONG-RANGE
INTERACTIONS

We consider a system with long-ranged attractive in-
teractions, falling off with distance as 7~ (4+9), A suitable
Hamiltonian functional of the scalar field is

H4] = / d4r((V$)?/2 + V(#)] + (Jir/2)
x / dér / dir'[p(r) — P /Ir — [T, (2)

where as usual we have taken the short-range part to
have the Ginzburg-Landau form Jyg > 0 and V(¢) has a
local maximum at ¢ = 0 and global minima at ¢ = £1.
The model is well defined for 0 < o < 2. The equation of
motion for a nonconserved field reads 8¢/0t = —6H /¢,
ie.,

I¢(r,t

WEY) _ 929 V'(9) + Hnld) 3)
where V'(¢) = dV/d¢$ and the LR force is given, both in
real and Fourier space, as

Vin(@) = hin [@'9(") - @)/le ¥4 (4)

d
— Jir h(d, o) / % S(k) kTR (5)
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and
h(d,o) =Q(d, o) gﬁfiﬁ , (6)
1+o
Qo) =T Lt ™

In (3) noise is absent since temperature is an irrelevant
variable [22]. From an analysis of (3), assuming the va-
lidity of the scaling hypothesis (1), the following growth
law has been predicted for a scalar order parameter [17,
20]:

L(t) ~ tY/(+o) |
~ 172

0<o<1
1<o<2,

b

(8)

in which the crossover o = 1 separates the regime where
domain growth is faster due to the LR correlations from
the regime where these become irrelevant [17, 20].

III. THE SCALING EQUATION

To obtain an equation for the two-point correlation
function (1) we multiply (3), evaluated at point (1)
(r1,t1), by ¢, evaluated at point (2) = (rz,t2), and av-
erage over the ensemble of initial conditions yielding, at
equal times,

18C(1,2)
27 ot

=V2C(1,2) — (#(2)V'(4(1)))
+(P(2)ViR(8(1)) - ©)
We will call (#(2)V'(4(1))) and (¢(2)V{r(4(1))) the

“nonlinear” (NL) and the “long-range” terms of the equa-
tion for C(r,t), where r = r; — r;. In (9) the LR term
reads, in both real and Fourier space,

(6(2)Vir(9(1)))
— Jin /ddr' [C(,t) — C(x,0)]/Ir —2|*°  (10)

(11)

J

ddk o _irk
=JLRh(d,o)/WC(k,t) ket
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Assuming the existence of a late-time single-scaling
regime, we expect C(r,t) to take the scaling form (1),
in terms of which (9) reads

1
L(t)?

+(6(2Vir(o(1)) , (12)

where © = r/L(t) is the scaling variable and f' = df /dz,
etc. In the equation above L/L ~ 1/t, if L(t) grows as a
power law. The LR term now reads

“3E o = g (17 + 1) - e )

(@(DVir($(1)
J T 1d+o
=t [4 U - r@)x =1t )
o d i
- JLI;:}(lt()% : (;i‘/rg)ld 9(y) y7e™V , (14)

where g(y) is the Fourier transform of f(z), and y
kL(t).

From an analysis of (3) for an isolated, stationary, pla-
nar wall, we find that to leading order the equilibrium
planar wall profile saturates as

Jir
Vy' ro

1—¢2(r) ~

(r = o),

(15)

where V' = (d?V/d¢?) 42—, and r is the distance from the
wall. Hence we expect that throughout the bulk region
|¢| will be below saturation by an amount ~ 1/L(t)°.
Even with this power-law decay we still expect there to be
well-defined walls, with a time-independent “thickness”
w, defined, for example, from (15) via w” = Jpr/Vy'.
Therefore, domain walls may be regarded as “sharp” at
late times, when L(t) > w. It follows that Porod’s law
(23], g(y) ~ A(d,0)/y?*! for y > 1, holds within the
regime kw < 1 « kL(t) = y [corresponding to w < r <
L(t) in real space], in which case Eq. (14) yields, for the
leading scaling behavior of the LR term, as x — 0,

o d o -0
@Vin (o) = TEALD) ([ 4 1 o ARDMELZ) p1oey ) 0cpcn

This result will be exploited below to determine the am-
plitude A(d,o) of the Porod tail, within the Gaussian
approximation.

IV. THE GAUSSIAN APPROXIMATION

In order to transform (9) or (12) into a closed equa-
tion we need to express the NL term as some approxi-

mate nonlinear function of C(r,t). A key idea, exploited
by several authors [5-11] within SR model A dynamics,
is to employ a nonlinear mapping between the order pa-
rameter ¢(r,t), which at the scale of L(t) is effectively
discontinuous near walls and an auxiliary “smooth” field
m(r,t), whose zeros define the wall network. This intro-
duces the wall structure into the problem and allows the
approximation to be implemented through the new field.
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From the equation of motion (3) we can see that, just
as in the SRMA, if the initial field satisfies |¢| < 1 every-
where, then this condition will hold at all times, ensuring
that a one-to-one mapping can be defined. For this model
we have in mind, following the analogous treatment [7]
for SR interactions, to identify the field m(r,t) at points
r near domain walls as the (signed) distance to the near-
est wall (along its local normal), with the sign of m being
that of ¢. This determines m uniquely when m < L(¢).
To specify m everywhere in space, we define the function
¢(r,t) = ¢(m(r,t)) by extending the suggestion [7] of us-
ing the equilibrium planar domain wall profile function
for an isolated wall, with m the coordinate normal to the
wall, i.e., the function ¢(m) is specified by the equation

_ d%(m)

S~ V'($(m)
a1, [T, [8(m) — $(m)]
+JLR/d y/_oo d o — )4y (17)

with boundary conditions ¢(0) = 0 and ¢(m) — sgn (m)
for |m| — oo. Using (17) and taking m to be a Gaussian
field, we can evaluate the nonlinear term (¢(2)V'(#(1)))
in Eq. (12). The details are given in the Appendix. The
LR part of the NL term, which follows from the last term
in (17), is given by [see Eq. (A7) in the Appendix]

Fxu(1,2) = Q(d, a)/ I.;?;j‘t"
x (#(m(2)) ¢(7n(1) +35) —o(m1))]) (18)
= iJI,;’Z{((;()i’/:) d9 sec?(0) , (19)
where
a(d,o) = h(d, o) ?—H—a-/;;—gl—a (20)

According to our identification of m(r,t) as a distance
from the interface, we expect Sy = (m?2) to have the
scaling form So = L(t)2, which can be used along with

J

Fnu(1,2) =

JLRa(d,a) (B(I_TU,I_T") _ (7Ta)1-0 zl-

(19) and (A5) to rewrite Eq. (12) for the scaling function
in the form

ALop |7+ 22+ 2ean (3)]

L(t)2
J [f(=") — f(=)]
*Te ([ e

i

—a(d, o) /O e sec?(6)) - (21)

For o < 2 the SR part in (21), scaling as 1/L?, is negli-
gible compared to the LR part, scaling as 1/L?, and can
be ignored (but see the discussion in Sec. VI). Demand-
ing that the left-hand side of (21) balance the terms of
order 1/L° on the right-hand side requires L/L ~ 1/L?,
i.e., that L(t) ~ t'/7. Note that this disagrees with the
expected form (8). In Sec. V we will argue that a resolu-
tion of this discrepancy requires us to drop the left-hand
side of (21) in leading order. For the moment, however,
we pursue the original (and a priori natural) assumption
that the left-hand side scales as 1/L° and write

L(t) = (Jurpt)'/7 (22)

where p is to be determined. Dropping the SR terms
from (21) gives the final equation for the scaling function

f(z):
0= (u/20)zf + /dd ,_f(w xlldiﬁ)]

—a(d, o) /0  0sec(6) | (23)

Equation (23) has to be solved numerically for general
scaling variable z. However, it is straightforward to de-
rive analytically the behavior for small and large . Using
the Porod’s law form f(z) =1 — a(d, o)z + - - - for small
z (it is simple to show that this is the only consistent
short-distance behavior), we find that the LR part of the
NL term, given by (19), has a leading scaling behavior as
x — 0, which is similar to (16)

+) , 0<o<1

L(t)o 21+o 2 1—c
= _JLIZ?f)dJ—U) (5 :TG:T(%F—T) +o], 1<o<z, =4

where B(z,y) is the beta function. Performing a small-z
expansion of Eq. (23), we find that the dominant terms
for x — 0 are obtained from the terms multiplying Jpr
in (21), whose small-z expansions are given by (16) and
(24). Matching powers of z for general 0 <o <2 and using
A(d,0) = —a(d,0)(2n)%/h(d,1) in (16) (which follows
from Fourier transforming the Porod tail [24]), we find

V2 (T
ot = (e

('H;_o)) ,0<o<2 (25)

for the coefficient of  in the small-z expansion of f(x)
25]. For o = 2, this reduces to the SR result a(d,2) =
2/(rvd—1).

For o < 1, (25) was obtained by matching the terms of
O(z'~9) in (16) and (24). The leading (constant) terms
yield an interesting sum rule to be satisfied by the struc-
ture factor scaling function g(y) for this range of o:

d o/2
[z ) v 2

0<o<1.
F(Z 229) sin(H'T"ﬂ') ’

(26)
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We now' look at the large-z asymptotic form of Eq.
(23) and discuss the large-z behavior of f(z). In this
limit, f(z) — 0 and the final two terms in (23) be-
come ¢(0)/z%*° and —a(d, o) wf(x)/2, respectively. In
this regime, (23) can be integrated to give

20g(0) 1 A
f(l‘) - [(d+ U)H — Wlala] pd+o rrlale/p

» (27)

where we note from (20) and (6) that a is negative. In
general, both terms in (27) will be present in the large-
z solution. On physical grounds, however, we do not
expect f(z) to fall off with distance more slowly (in a
power-law sense) than the underlying interactions, which
decay as r—(d+9), (An exception is when sufficiently long-
range power-law spatial correlations are present in the
t = 0 state. This power law can then persist for general
times [26]. Here, however, we consider only short-range
correlations in the initial state.) We infer that either
@ < wla|o/(d + o), so that the second term in (27) is
subdominant for large x, or A = 0. The first possibility,
however, implies that the coefficient of the (dominant)
first term in (27) is negative [since g(0) > 0 by defini-
tion], i.e., f(x) approaches zero from below, which also
seems unphysical (and disagrees with numerical simula-
tions [27]). We conclude that the only physically sensible
possibility is that A vanishes in (27). This can, presum-
ably, only happen for a special choice of u, so the condi-
tion A = 0 determines u. This mechanism is very similar
to that which determines pu for short-range interactions
[7,10]. Note that, if f(x) is to approach zero from above
for ¢ — oo, (27) gives the inequality

u>mwlalo/(d+ o) . (28)

A sum rule for p can be obtained by integrating (23) over
space:

20|a| / g /"f“
= d%z df sec? 0 .
H= 4g(0) o

Finally, it should be noted that the above analysis im-
plicitly assumes that g(0) is finite, i.e., that f(z) decays
faster than z~¢. In fact, the mathematical structure
allows for f(z) ~ z7? with p < d [28], but we reject
this possibility on the physical grounds that we appealed
to before, namely that, at least for initial states with
only short-ranged spatial correlations, the scaling func-
tion should not decay with a smaller power than the un-
derlying interactions.

V. TWO-TIME CORRELATIONS

The Gaussian approach can also be used to eval-
uate the two-time correlation function C(r,t;,t2) =
(d(x,t1)¢p(x + r,t2)) and, in particular, the autocorre-
lation function A(t,t2) = C(0,¢1,t2). The calculation
is simplest in the limit ¢, > t;, when C — 0 and the
full nonlinear equation can be linearized, Fourier trans-
formed, and explicitly integrated. In this regime the ana-
log of (9) for two-time correlations reads, in Fourier space
(dropping the SR term on the right-hand side),

9Cy

—— = —JLr|h|k7C —C , 29

Bt Lr|h|k7Ci + ot Ok (29)
where (22) has been used for L(t). We integrate (29)
forward from time at;, where a > 1 ensures that the
condition tz >> t1, required for the validity of (29), holds
at all times. This gives

7|al

£, \ Tlel/2e
Ck(t17t2) =Ck(t17at1) (_)

at]_
x exp{—JLr|h|k7 (t2 — at1)} . (30)

Using the scaling form Cx(t1,at;1) = L{ga(kL1), where
L, = L(t1), and summing over k for t; > ot gives the
autocorrelation function

A(t]_,tz) = const X (Ll/Lz)d—r|a|a/2u ) (31)

where const is clearly independent of a. The physical
requirement that A decrease with increasing ¢, gives the
inequality g > w|a|o/2d, which is guaranteed by (28)
for d > 0. The connection between the parameter p
and the exponent describing the decay of the autocor-
relation function is similar to that obtained for purely
short-ranged interactions [10, 13].

VI. DISCUSSION AND SUMMARY

We have extended the original Mazenko Gaussian ap-
proach [7] to the LR model and evaluated the late-time
leading contribution to the NL term of Eq. (21), yield-
ing a dominant LR part given by (19), which is of order
1/L°. An infinitely sharp wall profile has been used,
which amounts to neglecting a quantity of relative order
1/L°. The LR term in Egs. (11)—(14) is of the same
order as the nonlinear term and has an amplitude which
is a function of z, d and o, but its nonlocal nature [i.e.,
its dependence on the values of f(z) everywhere] makes
the problem particularly hard to handle.

Despite the profile power-law decay (15) induced by
the LR interactions, the scaling function exhibits Porod’s
law, i.e., a linear short-distance behavior in real space
with the coefficient given by (25). This is consistent with
the assumption that at late times there are well-defined
walls with a constant “width” independent of L(t). This
is an important point of principle, on which the identi-
fication of the field m(r,t) and the mapping (17) rely,
and also a key ingredient in the first-principles deriva-
tion [17,20] of the growth law (8). A proper decay of the
autocorrelation function (31) is also found.

The central question we want to address in this paper
is whether the Gaussian theory based on the bulk dynam-
ics is able to yield the correct growth law for this model.
We have seen that the naive application of the Gaus-
sian approach presented in Sec. IV ostensibly gives the
wrong growth law: (22) instead of (8). A related prob-
lem is the SRMB to which Mazenko has attempted to
apply the Gaussian approach [8], yet the correct growth
law does not come out of the theory as cleanly as in
the SRMA. In this system local conservation imposes a
bulk diffusion process which controls the interface mo-
tion and delays domain coarsening relative to the purely
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relaxational dynamics of model A. There are some com-
mon features between the dynamics of a conserved and
a LR interacting field, namely, the existence of a bulk
profile which relaxes rapidly to a nonsaturating value as
the walls move. One key difference, though, is that the
true growth law for the SRMB (t1/3) is faster than that
obtained by a naive application of the Gaussian approach
(without allowing for bulk diffusion), which gives t1/4.
Before implementing any approximation we focus the
analysis on the exact equation (12) for the scaling func-
tion f(z). If the growth law (8) holds, the time-derivative
term must be negligible compared to the LR term (14),
which scales as 1/L°, and therefore the NL term must
have a leading contribution of order 1/L?, which exactly
cancels the LR term in the scaling limit. In fact, this
condition determines the late-time leading contribution
to the scaling function. Within the Gaussian approxi-
mation, it amounts to neglecting the first term in (23)
[which came from the left-hand side of (21)] to give

0_/dd 2 @) = S) a(d,a)/ff
(32)

x/ |d+o’

Solving this equation gives the scaling function f(z),
within the Gaussian approach, provided the growth law
is slower than t'/°. However, there seems to be no way
to determine the growth law within this scheme. More-
over, (32) has a serious shortcoming. If we integrate the
equation over all space, the first term drops out, giving
the sum rule

oo mf(z)/2
/ dz md_l/ df sec®(8) =0 .
0 0

Since the integrand is positive definite, the only way
this sum rule can be satisfied is for f(z) to be negative
for some range (or ranges) of x, with sufficient negative
weight to satisfy (33). This seems a priori improbable
for a nonconserved order parameter and indeed numeri-
cal simulations [27] show no hint of it.

We emphasize, however, that since our fundamental
equation (12) is ezact, the analog of (33) obtained with-
out making the Gaussian approrimation must be exactly
true. Because the true growth is slower than ¢/, the
left-hand side of (12) is negligible in the scaling limit.
Taking the Fourier transform of the equation and setting
k = 0, the LR term vanishes. This leaves (to leading
order) the identity

/ diz (H2)V'($(1))) =

of which (33) is the special case obtained within the
Gaussian approximation.

A feature central of the present analysis is that in
order to capture the essential role of wall dynamics in
phase ordering process, an extra length scale, the typical
wall width w must emerge naturally within the approach
adopted. This argument follows from a scaling analy-
sis of the equation of motion for the order parameter ¢,
which ultimately leads to a w dependence in the growth
law L(t) [17,20] (except the case when L ~ /2, where w
accidentally cancels out). Following our argument above,

dfsec’ (0) .

(33)

(34)

the exact NL term (¢(2)V'(¢(1))) must provide a sub-
leading contribution of order w/L'*° for 0 < o < 1 and
w2~ ?/L? for 1 < o0 < 2, which matches the time deriva-
tive in (12). This contribution is absent in (19) and the
length scale w does not emerge (for instance, as a short-
distance cutoff) at any stage of our calculation.

Our results seem to indicate that the Gaussian ap-
proach, applied to the bulk equation of motion, is un-
able to account for the qualitative features of coarsen-
ing in systems with long-range interactions. This state-
ment holds, however, within our particular choice of the
Gaussian field m, which is related to ¢ by the equilib-
rium interfacial profile, i.e., the solution of (17). Since
we cannot exhaust all the possibilities, there is always a
chance that there may exist a mapping definition which is
physically more appropriate and works better than (17).
For example, one can in principle use the same mapping
¢"(m) = V'(¢(m)) as in the case of purely short range
interactions. However, this leads to an inconsistent scal-
ing analysis of the equation for C(r,t): at short distances
there is no LR part in the NL term to match the LR term
(16) and the Porod regime is lost; besides, m(r,t) can no
longer be regarded as a distance from a wall. By con-
trast, the mapping employed here seems far more natu-
ral and physically suitable for a system with LR interac-
tions. We summarize by saying that, beyond the simple
nonconserved systems with SR interactions, one cannot
apply the Gaussian bulk approach in a straightforward
and naive manner to construct a closed equation for the
scaling function f(z), as it fails to yield a growth law
different from that obtained from dimensional analysis
of the linear terms in the equation of motion. The rea-
son for this failure appears to be related to the inability
of the bulk approach to capture the essential role of the
wall dynamics in the domain coarsening. Just as for the
conserved scalar system, a deeper understanding of the
underlying physics is required in order to implement a
more controlled approximate scheme. This is clearly sug-
gested by the absence of the length scale w in our results
and by the success of an interfacial approach for the same
system, recently proposed by Ohta and Hayakawa [18].

Finally, we note that the present methods can also be
used for a vector order parameter with long-range inter-
actions. In that case the t/9 growth obtained within
the Gaussian approach is correct (apart from logarith-
mic corrections for n = 2 [17]). The purpose of the
present paper, however, is to test the method on those
systems which provide the greatest challenge, i.e., scalar
systems, in the hope that the difficulties identified here
may stimulate the development of more robust approxi-
mation schemes.
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APPENDIX

In this appendix we show how the nonlinear term in
the scaled equation of motion [i.e., the last term in Eq.
(21)] was obtained. Using (17), we can write
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2b(m +o0
<¢<2)V'(¢(1>)>=<¢<2>%)§i> +Q@o) [ s

=[5 [ S5 00I30) [um hid o)k

where h(d,o) and Q(d,o) are given by (6) and (7) and
#(k) is the Fourier transform of ¢(m).

Following Mazenko [7], we now make the key assump-
tion that m(r,t) is a Gaussian field (with zero mean) at
all times, with a pair distribution function

B 1 m(1)?  m(2)*
P(m(1),m(2)) =N eXp[_2(1 ) ( So(1) * So(2)
2ym(1)m(2)
“Vamse) -
D= (m(1?), +0.2) = 2URE)
L (a9)

T 2m /(T = 72)S0(1)5(2) |

We also note that, as the walls become effectively sharp
in the late-time regime, we can use the profile ¢(m) =
sgn (m) to evaluate the leading contribution to the scal-
ing functions. From (15) we expect that the effect of
ignoring the power tail in the profile is to neglect a quan-
tity of relative order ~ 1/L(t)? in the LR part of (A2).
The purely SR part of the NL term is then simply given,
as a nonlinear function of C(r,t), by the result 7] for the
SRMA

d*¢(m(1)) ™
<¢(2) dm(1)? > = T rSeD) (30) -
Deriving a similar result for the LR part of the NL
term is more tricky. There are three different ways to
perform the calculation: we will outline the basic steps
of each one. Representing ¢(m) in Fourier space and Tay-
lor expanding ¢(m+s) in powers of s, using the Gaussian
property and returning to real space gives the formal ex-
pansion for the second term in (A1) [29] [which we denote
by Fni(1,2), according to definition (18)]

(A5)

Jir

s[i+e (#(m(2))[p(m(1) + s) — $(m(1))]) (A1)
k2] <eim(1)k+im(2)k'>, (A2)
I
too o Jr
Fru(1,2) = Q(d,a)[ ds S
> ,n0"C(1,2)
22: 2n)!” 8Se(1)™ (A6)

Using C(1,2) = (sgn (m(1))sgn (m(2))), the integral rep-
resentation sgn (m) = 1/(z7r) f+°°dz explizm]/z, and the
Gaussian property, the series can be summed. Finally,
differentiating with respect to Co(1,2) = v4/S0(1)S0(2),
performing the z and s integrals, and integrating back
yields the nonlinear function

JLR a(d,o) 3¢

Fie(1,2) = S8

dfsec?(0) , (A7)

which is the result (19), with a(d, o) given by (20).
Alternatively, we can take ¢(m) = sgn(m) from the
start and do the s integral, giving

_ 2J1rQ(d,0) <Sgn (m(1)) sgn (m(2)) >
o lm(1)| ’

FniL(1,2) =

(A8)

use integral representations for sgnm and 1/|m|%, do the
Gaussian integral, differentiate with respect to Co(1,2),
perform the remaining integrals, and finally integrate
back over Cy(12), yielding the same result. Taking into
account (15) and using a sgnm profile, (A8) can be rec-
ognized as the leading order result for a ¢*-potential NL
term, i.e., (¢(2)#(1)[1 —¢%(1)]) [30]. Finally, the simplest
derivation is to take the integral representation of sgnm
in (A8), use the Gaussian property, differentiate with re-
spect to Co(1,2), and do the Gaussian integral, leading
to the same point as the first calculation before its final
integrations. This derivation, however, does not provide
the appealing intermediate expressions (A7) and (A8).
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